Энергообеспечение аэробных и анаэробных нагрузок

Любая мышечная работа требует энергии. Механическую энергию, затрачиваемую при напряжении мышца, берёт из собственных резервов химической энергии. Энергия, которая освобождается в результате сложных биохимических реакций, доставляется к тонким белковым нитям (мышечным волокнам), заставляет их менять своё положение, соединяться друг с другом и укорачиваться. Тем самым мышца, укорачиваясь, производит движение в суставе.

Энергия, необходимая для мышечной работы, образующаяся в результате биохимических реакций, основана на использовании трёх видов энергообразования: 1) аэробного, 2) анаэробно-гликолитического, 3) анаэробно-алактатного. Биоэнергетическими веществами (топливом) при выполнении мышечной работы являются углеводы, жиры и креатинфосфат. Белки необходимы организму, прежде всего как строительный материал для новых клеток.

Питательные вещества, проходя через желудочно-кишечный тракт, всасываются кровью и направляются дальше в «складские помещения». Жиры, которые могут быть рассмотрены как «низкоактановое топливо», откладываются преимущественно в подкожных тканях, Углеводы (гликоген) – высокоактановое топливо, накапливаются в мышцах и печени.

Если мощность выполняемой работы небольшая (умеренная), то энергия для работающих мышц образуется путём сгорания (окисления) углеводов и жиров при помощи вдыхаемого кислорода. В результате сгорания выделяется энергия, необходимая для работающих мышц и образуются побочные продукты – углекислый газ и вода.

Если мощность работы будет гораздо выше (большая или субмаксимальная), то энергии, выделяемой при сгорании углеводов (гликогена) будет не хватать и поэтому энергия, необходимая для такой работы образуется путём расщепления гликогена (без участия кислорода). Можно сказать, что в мышце имеется два механизма биохимических реакций – сгорания и расщепления.

Механизм сгорания (окисления)

Механизм сгорания углеводов и жиров можно назвать как аэробный процесс энергообразования (аэробный – с участием кислорода). Развёртывание аэробных процессов происходит постепенно, максимума этот процесс достигает через 1 -2 минуты после начала работы. Происходит полное сгорание углеводов и жиров, при котором образуется энергия, углекислый газ со2 и вода н2о, которые оттранспортировываются кровью.

Углеводы и жиры + кислород → сгорание = энергия + углекислый газ + вода.

Для того чтобы происходило сгорание (окисление), помимо «топлива» (углеводов и жиров) мышцы и ткани должны всё время снабжаться кислородом и освобождаться от продуктов «распада» (воды и углекислого газа). Транспортировка этих веществ осуществляется кровью. Чем больше кислорода получают мышцы, тем больше энергии может образовываться и тем более интенсивную работу можно выполнить. Поэтому аэробные возможности лимитируются дыхательной и сердечно-сосудистой системами. Утомление наступает, когда кончается «топливо». При соблюдении этих условий мышечная среда остаётся постоянной и можно работать 2-3 часа и более. Механизм сгорания (окисления) – доминирующий источник энергии при длительной малоинтенсивной и умеренной интенсивности работе (а также в покое).

Таблица №2. Зависимость между продолжительностью соревновательной дистанции и функциональной активностью различных систем организма, характеризующих аэробные возможности.

Продолжительность соревновательной дистанции. Функциональная активность различных систем организма.
До 3 мин. Мощность максимального потребления кислорода (МПК).
От 3 до 5 мин. Удержание мощности МПК.
От 5 до 10 мин. Ёмкость МПК.
До 20-25 мин. Мощность порога анаэробного обмена (ПАНО).
Свыше 30 мин. Ёмкость ПАНО.

Механизм расщепления (анаэробный – без участия кислорода).

Механизм расщепления биоэнергетических веществ в человеческом организме происходит двумя путями: 1) расщепление гликогена, находящегося в мышцах – анаэробно-гликолитический механизм; 2) расщепление креатинфосфата (КрФ), так же находящегося в мышце – анаэробно-алактатный механизм.

Анаэробно – гликолитический механизм. Освобождение энергии происходит за счёт мгновенного расщепления содержащегося в мышце гликогена (более сложной формы углеводов).

Гликоген → расщепление = Энергия + молочная кислота (лактат).

Этот механизм даёт гораздо больше энергии в единицу времени, чем аэробный механизм и используется при выполнении работы субмаксимальной мощности, с продолжительностью отдельного упражнения от 30 секунд до 2-3 минут. Преимущество этого механизма, который можно сравнить с разрядкой электрической батареи, состоит в том, что он заключается в самой мышце и используется мгновенно. Недостаток же заключается в том, что в работающих мышцах накапливается большое количество молочной кислоты и им становится трудно справляться с воздействием кислой среды.

Таблица №3. Зависимость между продолжительностью соревновательной дистанции и функциональной активностью различных систем организма, характеризующих анаэробно-гликолитические возможности.

Продолжительность соревновательной дистанции. Функциональная активность различных систем организма.
30-40 секунд. Мощность гликолиза.
60 секунд. Удержание мощности гликолиза.
От 2 мин. до 3 мин. Ёмкость гликолиза.

Анаэробно-алактатный механизм.

Для выполнения упражнений с максимальной скоростью (мощностью) необходим механизм, выделяющий наибольшее количество энергии в единицу времени, но действующий кратковременно (не более 15-20 секунд). Таким механизмом и является анаэробно-алактатный (креатинфосфатный).

Креатинфосфат (КрФ) → расщепление = Энергия + Креатин (Кр.).

Таблица №4. Зависимость между продолжительностью соревновательной дистанции и функциональной активностью различных систем организма, характеризующих анаэробно-алактатные возможности.

Это может быть интересно:

Аэробная производительность ;
Аэробная тренировка 7 упражнений для позвоночника ;
Аэробные тренировки под музыку ;

Метки: , ,