Биохимические процессы в печени при физических нагрузках

Биохимические процессы в печени при физических нагрузках

Сокращение и расслабление мышечных волокон — активный процесс, требующий много молекул АТФ. И митохондрии мышечных клеток работают очень интенсивно. Основным энергетическим субстратом для мышц является глюкоза. Во время отдыха глюкоза из крови поступает в мышцы в большем количестве, чем нужна для текущих трат, и запасается в виде гликогена. Эта глюкоза, запасённая в мышцах, больше никогда не поступит обратно в кровь, а будет израсходована при нагрузке.

При мышечной деятельности активируются функции печени, направленные преимущественно на улучшение обеспечения работающих мышц внемышечными источниками энергии, переносимыми кровью. Ниже описаны наиболее важные биохимические процессы, протекающие в печени во время работы.

1. Печень тоже запасает гликоген, но при необходимости (например, при физической работе) отдаёт глюкозу в кровь — для мышц. Под воздействием адреналина повышается скорость гликогенеза — распада гликогена с образованием свободной глюкозы. Образовавшаяся глюкоза выходит из клеток печени в кровь, что приводит к возрастанию ее концентрации в крови — к гипергликемии. При этом снижается содержание гликогена. Наиболее высокая скорость глюкогенеза в печени отмечается в начале работы, когда запасы гликогена еще высоки.

2. Во время выполнения физических нагрузок клетки печени активно извлекают из крови жир и жирные кислоты, содержание которых в крови возрастает вследствие мобилизации жира из жировых депо. Поступающий в печеночные клетки жир сразу же подвергается гидролизу и превращается в глицерин и жирные кислоты. Далее жирные кислоты путем Р-окисления расщепляются до ацетил-КоА, из которого затем образуются кетоновые тела — ацетоуксусная и Р-оксимасляная кислоты. Синтез кетоновых тел обычно называется кетогенезом. Кетоновые тела являются важными источниками энергии. С током крови они переносятся из печени в работающие органы — миокард и скелетные мышцы. В этих органах кетоновые тела вновь превращаются в ацетил-КоА, который сразу же аэробно окисляется в цикле Кребса до Углекислого газа и воды с выделением большого количества энергии.

3. Еще один биохимический процесс, протекающий в печени во время работы, — глюконеогенез. Уже отмечалось, что этот процесс Инициируется глюкокортикоидами. За счет глюконеогенеза в клетках Печени из глицерина, аминокислот и лактата осуществляется синтез глюкозы. Этот процесс идет с затратой энергии АТФ. Обычно глюконеогенез протекает при длительной работе, ведущей к снижению концентрации глюкозы в кровяном русле. Благодаря глюконеогенезу организму удается поддерживать в крови необходимый уровень глюкозы.

4. При физической работе усиливается распад мышечных белков, приводящий к образованию свободных аминокислот, которые далее дезаминируются, выделяя NH3. Аммиак является клеточным ядом, его обезвреживание происходит в печени, где он превращается в мочевину. Синтез мочевины требует значительного количества энергии. При истощающих нагрузках, несоответствующих функциональному состоянию организма, печень может не справляться с обезвреживанием аммиака, в этом случае возникает интоксикация организма этим ядом, ведущая к снижению работоспособности.

Пример: работа организма при спринтерском забеге

Во время спринтерского бега происходит так называемый анаэробный гликолиз. Глюкоза при этом распадается на две молекулы молочной кислоты и при этом выделяется энергия, достаточная для ресинтеза двух молекул АТФ. Этот процесс, как мы видим, в 19 раз менее эффективен, чем аэробный гликолиз (с применением цикла Кребса). Кроме того, молочная кислота быстро закисляет кровь, отчего спринтер не может бежать долго.

Но против этих двух недостатков у анаэробного гликолиза есть одно ценное преимущество — он требует намного меньше времени, чем аэробный. Поэтому спринтер бежит значительно быстрее, чем стайер. Энергообмен у бегуна на 100 метров обеспечивается только анаэробным гликолизом, а на 10 км — одним аэробным.

А с молочной кислотой, которая образуется при спринтерском беге, организм успешно справляется. Существует обратный процесс — из двух молекул молочной кислоты образуется одна молекула глюкозы, но для этого затрачивается 6 молекул АТФ. Эту энергию организм получает уже аэробным гликолизом, который начинается сразу после финиша и требует много кислорода. Поэтому спринтер во время стометровки почти не дышит, зато после того, как остановится, дышит очень интенсивно.

При беге на длинную дистанцию организм тоже расходует глюкозу, но путём аэробного гликолиза, конечными продуктами которого являются углекислый газ и вода. Глюкоза тратится безвозвратно, и теоретически запаса гликогена в мышцах и печени должно хватить всего лишь на 5 км бега. А как же тогда бегуны покрывают дистанции в 10, 15, 20 километров?

Дело в том, что почти сразу начинает подключаться другой энергоноситель — жиры. Если на первых метрах длинной дистанции организм использует только глюкозу (и на топливо для цикла Кребса, и на катализатор), то затем постепенно доля жиров в поставке топлива увеличивается. И уже на десятом километре организм переходит на самый экономичный режим: глюкоза тратится почти только на синтез щавелевоуксусной кислоты (катализатор), а почти весь ацетил-кофермент А (топливо) организм получает из жиров. Но примерно на двадцать пятом километре запасы гликогена полностью заканчиваются, катализатор для цикла Кребса образовываться не может и наступает резкая слабость (хотя топлива предостаточно). От бегуна в этот момент пахнет ацетоном, который самопроизвольно образуется из избытка ацетоуксусной кислоты — промежуточного продукта распада жиров.

Вот почему на марафонских дистанциях в обязательном порядке организуются питательные пункты, где бегунам дают сахарный раствор. Без этого участники просто не смогут закончить дистанцию.

Как мы видим, неспроста тем, кто хочет похудеть, прописывают физкультуру. При аэробных упражнениях (бег и ходьба на длинные дистанции, длительная работа на тренажёрах, продолжительные занятия аэробикой, танцами, плаванием и т.п.) организм гарантированно тратит собственные жиры. Правда, если после физической нагрузки человек станет есть вволю, то организм будет восполнять утраченные жиры, и физкультура пойдёт насмарку.

biofile.ru

Читай также:

Аэробный гликолиз Окисление липидов
Аэробные упражнения прыжки на батуте
Аэробная и анаэробная нагрузка, упражнения в домашних условиях
Аэробный гликолиз продукты

Метки: , ,