Анаэробный гликолиз

Читайте также:

  1. Анаэробный гликолиз — самодостаточный процесс
  2. Анаэробный гликолиз, гликогенолиз
  3. Аэробный гликолиз
  4. Аэробный гликолиз.
  5. ГЛИКОЛИЗ
  6. Гликолиз
  7. Гликолиз и глюконеогенез дополняют друг друга
  8. Обход десятой реакции гликолиза
  9. Первый этап гликолиза
  10. Связь пентозофосфатного пути превращения глюкозы с гликолизом и глюконеогенезом
  11. Энергобаланс анаэробного и аэробного гликолиза.

Гликолиз

Гликолизэто последовательность реакций, в результате которых глюкоза распадается на две молекулы пировиноградной кислоты (пирувата) (аэробный гликолиз) или две молекулы молочной кислоты(лактата) (анаэробный гликолиз).

Все реакции гликолиза протекают в цитозоле и характерны для всех органов и тканей.

Ниже приведены стехиометрические уравнения анаэробного (а) и аэробного (б) гликолиза:

→ 2CH3CHOHCOOH + 2АТФ + H2O (а);

→ 2CH3CHOCOOH + 2АТФ + H2O + НАДН∙Н + (б).

Общие характеристики для аэробного и анаэробного гликолиза:

— большинство реакций обратимо, за исключением трех (реакций 1, 3, 10);

— все метаболиты находятся в фосфорилированной форме;

— источником фосфатной группы в реакциях фосфорилирования являются АТФ (реакции 1, 3) или неорганический фосфат (реакция 6).

. Анаэробный гликолиз это расщепление глюкозы в отсутствии или при недостаточном количестве кислорода.

Анаэробный гликолиз включает теже реакции, что и аэробный гликолиз до пирувата, но с последующим превращением пирувата в лактат.

Последовательность реакций анаэробного гликолиза представлена на рисунке 9.2:

Рис. 9.2. Схема гликолиза в анаэробных условиях: Ф1 — гексокиназа;
Ф2 — глюкозофосфатизомераза; Ф3 — фофсофруктокиназа;
Ф4 — фруктозо-1,6-дифосфатальдолаза; Ф5 — триозофосфатизомераза;
Ф6 — 3-ФГА-дегидрогеназа; Ф7 — фофсоглицерокиназа; Ф8 — фосфоглицеромутаза; Ф9 — енолаза; Ф10 — пируваткиназа; Ф11 — лактатдегидрогеназа

Условно гликолиз можно разделить на две стадии:

первая стадия гликолиза – стадия активации глюкозы, которая включает пять реакций и завершается расщеплением углеродного скелета глюкозы на две молекулы трёхуглеродного скелета – глицероальдегидфосфата;

вторая стадия – синтез молекул АТФ, в которой энергия окислительных реакций трансформируется в химическую энергию АТФ по механизму субстратного фосфорилирования.

I. Стадия активации глюкозы:

1) Необратимая реакция фосфорилирования глюкозы и образования глюкозо-6-фосфата, катализируемая ферментом гексокиназой.

2) Обратимая реакция кето-альдольной изомеризации
глюкозо-6-фосфата во фруктозо-6-фосфат, катализируемая ферментом глюкозо-6-фосфатизомеразой.

3) Необратимая реакция фосфорилирования фруктозо-6-фосфата молекулой АТФ до фруктозо-1,6-дифосфата, катализируемая ферментом фосфофруктокиназой.

4) Обратимая реакция расщепления связи С-С во
фруктозо-1,6- дифосфате на две триозы дигидрооксиацетон-3-фосфат и глицеральдегид-3-фосфат, катализируемые ферментом альдолазой.

5) Обратимая реакция кето-альдольной изомеризации дигидроксиацетон-3-фосфата в глицеральдегид-3-фосфат, катализируемая ферментом триозофосфатизомеразой.

II. Стадия синтеза АТФ:

6) Обратимая реакция окисления глицероальдегид-3-фосфата до
1,3-фосфоглицерата, которая катализируется ферментом глицеральдегид-3-фосфатдегидрогеназой.

. Эта реакция позволяет высокую энергию окисления альдегидной группы аккумулировать в виде макроэргической связи АТФ.

7) Обратимая реакция субстратного фосфорилирования АДФ и образования АТФ, при которой происходит перенос богатого энергией фосфорильного остатка с 1,3-дифосфоглицерата на АДФ. Реакция катализируется фосфоглицераткиназой.

8) Обратимая реакция изомериизации 3-фосфоглицерата в
2-фосфоглицерат, катализируемая ферментом фосфоглицератмутазой.

9) Обратимая реакция енолизации, в процессе которой отщепление молекулы воды от 2-фосфоглицерата приводит к образованию макроэргической связи в фосфоеноилпирувате. Реакция катализируется ферментом енолазой.

10) Необратимая реакция субстратного фосфорилирования АДФ и образования АТФ, при которой происходит разрыв макроэргитечской связи и перенос фосфорильного остатка от фосфоэнолпирувата на АДФ. Катализируется эта реакция ферментом пируваткиназой.

11) Обратимая реакция восстановления пирувата до лактката происходит в анаэробных условиях при участии фермента лактатдегидрогеназы, коферментом которой является восстановленная форма НАДН∙Н +

Специфические характеристики анаэробного гликолиза (отличие от аэробного гликолиза):

Во-первых, при анаэробном гликолизе окисление НАДН∙Н + осуществляется независимо от дыхательной цепи. В этом случае акцептором водорода от НАДН∙Н + является пируват, который восстанавливается в лактат.

Во-вторых, образование АТФ при анаэробном гликолизе идёт за счет субстратного фосфорилирования, когда для фосфорилирования АДФ используется энергия макроэргической связи субстрата (реакции 7, 10).

Дата добавления: 2014-01-20 ; Просмотров: 3126 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

По данным:studopedia.su

Другие публикации:

5 добавок улучшающих аэробную выносливость ,
Super Press ,
Men s Health ,
Iron Health ,
12 лучших BCAA ,

Метки: , ,